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Abstract 

This paper provides a comprehensive literature review on the application of digital twins (DTs) 

and the development of artificial intelligence (AI), big data and building information management 

(BIM). Driven by the Internet of Things (IoT), big data analytics and artificial intelligence, DT 

technology has become a transformative force in Industry 4.0. It enables real-time simulation, 

analysis, and optimization of industrial systems throughout their lifecycle, leading to significant 

improvements in operational efficiency and decision-making processes. This review explores the 

various applications, challenges, and prospects of DTs in the aerospace, manufacturing, 

construction, and power industries. The key challenges discussed include data management, model 

complexity, cybersecurity, and standardization. This review highlights the importance of 

addressing these challenges to realize the full potential of DT technology in various industries 

while emphasizing the need for high-quality data, accurate modeling, robust security measures, 

and standardized evaluation criteria. As DT technology continues to evolve, it will play a key role 

in advancing smart, resilient and efficient industrial systems. 
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1. Introduction 

The human industry is becoming increasingly large-scale, systematic and complex, such as large 

equipment manufacturing, aerospace and construction. Industrial technology has shown a trend of 

high integration and complexity in pursuit of higher efficiency. Accordingly, increasingly complex 

industrial equipment faces a relatively high probability of failure, and the evaluation of its 

performance and expected lifetime will become increasingly complex [1]. Therefore, how to 

efficiently realize the design, manufacturing, testing, operation, maintenance, fault diagnosis, 

condition assessment, and life prediction of complex industrial equipment in this context has 

become a challenge for modern industrial technology [2]. With the emergence of technologies 

such as the Internet of Things (IoT), cloud computing, and integrated multidomain and multiscale 
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modeling, a new solution, digital twin (DT) technology, has emerged to address the above 

industrial technology challenges [3-5]. 

DT technology originated from the concept of "digital equivalence to physical products" proposed 

by Michael Greaves [6]. In 2006, Hribernik et al. [7]. proposed the concept of "product avatars", 

which is similar to the concept of DTs. The concept of product avatars aims to create an 

information management architecture that supports bidirectional information flow from a product-

centric perspective. NASA introduced the term DT in 2010 [8]. After more than a decade of 

development, the concept of DT technology has become increasingly clear, that is, the 

establishment of a DT mirror image through an information technology platform to simulate 

physical entities, processes, or systems. The formation of DT technology is inextricably linked to 

the development of the IoT [9]. The IoT uses its terminal components to collect data for feedback 

and forms a digital simulation on an informatization platform through wireless transmission, cloud 

computing, artificial intelligence (AI), machine learning, big data analysis, and other means [10]. 

Since data collection and feedback are performed in real time, the digital simulation generated on 

the informatization platform will constantly change according to the actual situation and present 

the real situation of the simulated object [11-13]. 

DT technology has rapidly advanced due to the development of key technologies such as 

multidomain and multiscale integrated modeling, state evaluation, blending data-driven and 

physical models, data acquisition and transmission, and cloud computing and edge computing [14]. 

Its essence lies in the integration and comprehensive application of various composite technologies 

to address issues emerging in the industrial equipment domain [15]. Multiphysics and multiscale 

modeling are important for high-fidelity modeling of DTs and simplify the contradiction between 

the virtual model and the complex behavior of physical objects [16]. Data-driven modeling, 

especially machine learning, provides an alternative approach by learning the relationship between 

inputs and outputs, enabling models to estimate system behavior without explicit physical 

principles [17]. 

For DTs, real-time data acquisition and transmission of the status of the target object are important. 

Real-time data acquisition primarily demands a broad range covering all aspects of the target object, 

such as temperature, pressure, and vibration, all of which must be precisely captured through 

sensors [18]. A stable, reliable, and fast data transmission system ensures that data collected by 

distributed sensors can reach the information platform in real time and be used for digital model 

construction and updates [19]. Cloud and edge computing platforms are essential for ensuring that 

each complex functional step can be accomplished, improving computational performance and 

flexibility [20]. 

DTs have diverse applications, from aerospace to manufacturing. In aerospace engineering, DT 

technology is used to improve the efficiency and safety of aircraft design, testing, and operation 

[21-24]. It enables real-time monitoring and maintenance planning, enhancing decision-making 

processes [25-27]. In manufacturing, DTs optimize production processes, enhance quality control, 

and enable predictive maintenance, leading to increased operational efficiency and reduced costs 

[28-31]. The integration of AI, big data, and building information management (BIM) with DTs 

has further expanded their potential [32-35]. AI and big data analytics enhance the ability to 

process and analyze large volumes of data generated during the lifecycle of a building, optimizing 

design, construction, and operational strategies [36-38]. BIM enables the creation of accurate 

virtual models of buildings, facilitating collaboration among stakeholders and ensuring efficient 

project management [39, 40]. DT technology in power transmission systems enables real-time 
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monitoring, analysis, and optimization, improving reliability and efficiency. It supports predictive 

maintenance, reduces downtime and enhances system performance [41]. 

The development of DT technology faces key challenges such as data management, model 

complexity, cybersecurity, and standardization [42], which are critical to address for widespread 

adoption and success across industries [43]. This paper provides a comprehensive review of the 

applications, challenges, and future prospects of DTs, particularly in traditional industries such as 

aerospace, manufacturing, construction, and power transmission. These sectors, owing to their 

reliance on complex systems, are well suited to benefit from the integration of DT technologies. 

The innovation and contribution of this paper lies in its focus on traditional industries where DTs 

have achieved significant maturity. By concentrating on these domains, the paper highlights the 

role of DT in improving operational efficiency and integrating with emerging technologies such 

as the IoT, AI, and big data. Additionally, the paper offers valuable insights into overcoming the 

challenges of data management, model complexity, cybersecurity, and standardization, providing 

practical recommendations for real-world industrial applications. 

2. Key Technologies for DT 

The ability of DT technology to realize the digital simulation of physical entities, processes, or 

systems is indispensably linked to the development of key technologies such as multidomain and 

multiscale integrated modeling, state evaluation blending data-driven and physical models, data 

acquisition and transmission, and cloud computing and edge computing [44]. Its essence lies in 

the integration and comprehensive application of various composite technologies to address issues 

emerging in the industrial equipment domain. 

2.1 Multiphysics and multiscale modeling 

Modeling is the core part of DT and requires a thorough understanding of the physical properties 

and their interactions. Therefore, multiphysical field and multiscale modeling are important for 

high-fidelity modeling of DTs [45]. A key issue that should be addressed in DT modeling is to 

simplify the contradiction between the virtual model and the complex behavior of physical objects. 

One compromise is to use a modular approach to achieve flexible modeling. Negri et al. [46] 

suggested incorporating black-box modules in the main simulation model. A functional mock-up 

interface (FMI) standard is used for the black-box modules, creating functional mock-up units 

(FMUs), as shown in Figure 1. The various behavioral models of the DT are activated only when 

needed and interact with the main simulation model through a standard interface. To achieve 

balance, engineers should determine which components are critical to system functionality and 

determine the modeling level of each component before creating a DT model of a complex system. 

As a result, high-fidelity DT models can be created on the basis of different modeling levels. 
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Figure 1: FMU in the application case [46] 

2.2 Data-driven Modeling 

Although significant progress has been made in the fields of multiphysics and multiscale modeling, 

developing accurate and reliable numerical physical models for objects with complex mechanical 

structures is still a major challenge. Relying only on analytical physical models of target objects 

to assess the state of complex objects cannot yield accurate results. Therefore, data-driven 

approaches, especially machine learning, can be utilized [47-50]. Machine learning models 

provide an alternative approach by learning the relationship between inputs and outputs, enabling 

these models to estimate system behavior without explicit physical principles [51-53]. For example, 

neural networks can predict possible future failures by learning data from machines under normal 

operation and failure conditions (Figure 2) [48]. Moreover, real-time simulation ensures that the 

DT reflects the real-time state of the physical object or system, including real-time data integration 

and dynamic simulation, to update the model under new data inputs and simulate its future 

behavior. Model validation and calibration are critical steps to ensure that the DT is accurate and 

reliable. Comparing the model's predictions with actual observations allows for assessing its 

accuracy and, if necessary, adjusting the model's parameters to enhance its predictive capabilities. 
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Figure 2: Artificial neural network [48] 

2.3 Data acquisition and transmission 

For DTs, real-time data acquisition and transmission of the status of the target object are important 

[54]. Real-time data acquisition and transmission demand two main aspects. First, the acquisition 

range must be broad, covering all aspects of the target object, such as temperature, pressure, and 

vibration, all of which must be precisely captured through sensors. Second, a stable, reliable, and 

fast data transmission system is needed to ensure that the data collected by distributed sensors can 

reach the information platform in real time, which is used for digital model construction and 

updates. With the rapid progression of technology, swift advancements in sensor capabilities and 

the implementation of new transmission technologies have laid a solid foundation for the 

development of DT technology [55]. For example, with highly integrated microelectromechanical 

system (MEMS) sensors and narrowband IoT (NB-IoT) technology (Figure 3) in the 

communication field, these novel data sensors and transmission technologies can achieve high 

integration and low-cost large-scale applications [56]. 

 

Figure 3: Artificial neural network [56] 

2.4 Cloud and edge computing 

DTs apply technologies such as sensor data collection, the IoT, and multiphysical field multiscale 

modeling; therefore, DTs rely on high-performance computing platforms to ensure that each 

complex functional step can be accomplished. To improve computational performance, DT 
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technology is guaranteed from two main aspects. First, it widely applies cloud computing 

technology that is based on distributed computing, relies on cloud server resources, and flexibly 

mobilizes computing resources according to the size of the computing demand [57]. Second, it 

relies on the development of edge computing, which is a platform that integrates networks, 

computing, storage, and applications and is able to carry out computing services in close proximity 

to the side of things or data sources. Moreover, edge computing can also be combined with cloud 

computing, which can access the historical data of edge computing [58]. 

 

Figure 4: Cloud computing architecture [57] 

3. DTs in Aerospace and Manufacturing 

3.1 Aerospace Engineering 

In the field of aerospace engineering, DT technology is widely used as an innovative approach to 

improve the efficiency and safety of the design, testing and operation of aircraft. By creating a 

virtual replica of an aircraft, engineers are able to simulate various flight and environmental 

conditions within a risk-free virtual environment, thereby optimizing design, predicting, and 

preventing potential issues and improving maintenance strategies. Throughout the lifecycle of an 

aircraft, the DT can receive and analyze data collected from its sensor network in real time, 

providing instantaneous insights into system performance and health, thereby supporting more 

intelligent decision-making. For example, during flight, DTs can be used to monitor the structural 

integrity and performance of various systems of aircraft, predict potential failures, and assist in 

determining the root cause when failures occur. On the ground, maintenance teams can utilize DTs 

to plan and simulate maintenance operations, ensuring that the actions taken are maximized for 

safety and efficiency. Moreover, DTs also support more efficient training and preparedness, as 

pilots and ground personnel can practice and test various scenarios within a simulated virtual 

environment without the need for expensive and complex physical simulators. 

For over a decade, DTs have been evolving in the aerospace industry. NASA pioneered the 

definition of DT within the realm of aerospace in 2010 and constructed a development roadmap 

for them [59], which underscored their strategic importance to U.S. space sciences and the Air 

Force. By 2035, NASA aimed to develop DTs for spacecraft that can adapt and manage 

comprehensive mission arrays. Simultaneously, the U.S. Air Force has achieved an array of 
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inventive discoveries through feasibility studies of DTs. DTs have evident applications in 

feasibility analysis, fleet administration, and diagnostics and forecasting during flight [60]. 

Additionally, in the 2010s, DT-driven intelligent manufacturing emerged as a trending trajectory 

for Industry 4.0 [61]. Prominent aerospace original equipment manufacturers (OEMs), including 

Boeing, Airbus, and GE, initiated their respective DT initiatives. These globally dominant 

aerospace OEMs anticipate DT to dynamically refine design and manufacturing processes, 

enhancing product quality and dependability while curtailing costs and optimizing time efficiency. 

The application of DTs in aerospace continues to be a prominent topic within the academic 

community, with numerous scholars innovating across various facets. Meyer et al. [62] explored 

the implementation and advancement of DTs in various sectors, emphasizing their ability to reflect 

and predict the status of assets, particularly in the aerospace context. An internal project within the 

German Aerospace Center (DLR) is established, which collaborates with several institutes across 

IT and aviation engineering to explore methodologies and technologies for DT. Three use cases 

are defined to demonstrate DT capabilities and uncover new development opportunities, with a 

particular focus on using DTs as a research tool in the research of aircraft use cases. The project 

addresses numerous IT-related issues and moves toward a common vision for DT technology, with 

the next steps involving the implementation and demonstration of prototypes across the defined 

use cases. The authors present an overview of the project’s results and developments, aiming to 

digitally map aircraft and their components. 

 

 

Figure 5: Framework of the digital thread-based DT model [63] 

Zhang et al. [63] proposed a digital thread-based modeling DT framework (Figure 5) to manage 

industrial production sites, particularly focusing on the intricate assembly environment of the 

aircraft assembly process, through the mapping of physical entities to virtual spaces. Addressing 

the limitations of existing DT modeling methods, which lack provisions for data flow and intrinsic 

intermodule interaction, this framework amalgamates the strengths of both DTs and digital threads. 

Enhanced data management within the framework seeks to augment the controllability and 
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traceability of the manufacturing process and product quality. The implementation of the 

framework is demonstrated via a case study of the aircraft assembly process, revealing its potential 

to increase efficiency through comparative analysis. 

3.2 Manufacturing 

DTs are expanding in manufacturing and can benefit manufacturing operations at different levels. 

Notably, with process-based DT, companies can achieve production visibility and planning to 

improve operational agility, increase throughput, and optimize process efficiency across the supply 

chain [64]. Specific use cases include production monitoring, asset monitoring and machine 

diagnostics, visual job description support, predictive maintenance, shop floor performance 

improvement, process optimization, etc. [65]. The application of DTs in the manufacturing 

industry is divided into three main categories: product DTs, production DTs, and equipment DTs 

throughout the entire product lifecycle management (PLM). 

3.2.1 Product design DT 

In the product design phase, generic DTs are utilized for the creation of three-dimensional digital 

models of the product, accurately recording various physical parameters of the product and 

presenting them in a visual manner [66]. Through simulation and emulation, the performance and 

behavior of the product under various external conditions are validated, ensuring that product 

adaptability is verified during the design phase. Compared with traditional manufacturing methods, 

which require the production of a batch of physical prototypes to validate product adaptability and 

performance, the product cycle is significantly shortened, and design verification costs are 

substantially reduced. 

3.2.2 Production DT 

During the manufacturing phase of a product, the main objective of production DT is to ensure 

that products can be produced efficiently, with high quality and at a low cost. The primary entities 

designed, simulated, and verified are the production systems, which encompass manufacturing 

processes, manufacturing equipment, manufacturing workshops, and management control systems 

[45]. DTs can expedite product introduction times, enhance the quality of product designs, reduce 

production costs, and accelerate product delivery. Virtual production lines established through 

digital means, which highly integrate the DT of the product itself with production equipment and 

processes, among other forms of DT, enhance collaborative efficiency. 

3.2.3 Equipment DTs 

In the manufacturing process, certain equipment or devices are essential, and any malfunction or 

damage to this equipment often leads to significant losses to the production line. Equipment DTs, 

through the establishment of DT models of equipment, monitor the real-time operational status of 

equipment. By utilizing historical data, real-time data, and operational data of the equipment and 

combining it with big data analysis and mining techniques, equipment operation can be optimized, 

predictive maintenance and care can be conducted, unplanned downtime risks for key production 

equipment can be minimized, and the lifespan of key equipment can be extended. 

The employment of DTs in manufacturing has captured significant academic interest, with notable 

innovations emerging in recent years. Bolender et al. [67] explored in depth the ability of DTs to 

represent, control, predict, and optimize the behavior of cyber-physical production systems 

(CPPSs) in diverse and complex environments. They recognize the challenges posed by CPPSs, 

such as differences in behavior due to different deployments, configurations, and environmental 
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factors, and highlight the need for expert human operators to be skilled in modifying CPPS 

configurations. The authors aim to enhance the adaptability of DTs in such scenarios, leading them 

to propose a modeling framework for adaptive manufacturing that supports the modeling of 

domain-specific cases and specifies rules for case similarity and case-based reasoning in modular 

DTs. They assert that by leveraging explicitly modeled domain expertise, the automatic 

configuration of DTs can optimize manufacturing time, minimize waste, and significantly 

contribute to more sustainable manufacturing practices. 

Friederich et al. [68] introduced a novel approach to adopting DTs in smart factories, 

acknowledging the pivotal role they play in enhancing productivity and reducing costs and energy 

consumption, especially amid the challenges of swiftly changing customer demands and shorter 

product life cycles (Figure 6). In light of the limitations of traditional modeling and simulation 

methods in such dynamic contexts, they propose a unique, generic data-driven framework that 

automatically generates simulation models, forming the foundation for DTs in intelligent 

manufacturing environments. By utilizing advancements in machine learning and process mining 

techniques, their innovative framework minimizes, defines, or possibly eliminates the necessity 

for expert knowledge in extracting corresponding simulation models, a concept they exemplify 

through a detailed case study. 

 

Figure 6: Generic data-driven framework for automated generation of simulation models 

as the basis for DT for smart factories [68] 

4. DT in the Construction Industry 

4.1 Development of AI, Big Data and Building Information Management 

AI, big data, and BIM are intertwined technologies that collectively enhance the planning, design, 

construction, and management of buildings and infrastructure. AI has the ability to process and 

analyze data in a way that can predict outcomes, automate processes, and optimize solutions in the 

realm of building management. It can be applied in various aspects of BIM, such as automating 

design processes, enhancing project scheduling, predicting maintenance requirements, and 

optimizing energy consumption, thereby adding a layer of intelligence and automation to building 

management. 
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Big data refer to the enormous volumes of data generated during the lifecycle of a building, which 

can be structured or unstructured. It includes analyzing large datasets to uncover patterns, 

correlations, trends, and insights that are important for making informed decisions. In the context 

of BIM, big data analytics can be used to analyze data from various stages of the building lifecycle 

to optimize design strategies, improve operational efficiency, and enhance the overall performance 

of buildings. 

BIM is a sophisticated approach to managing the entire lifecycle of a building, from its initial 

design and construction to its eventual demolition, via comprehensive, digital 3D models. It is not 

just a type of software or technology but rather an integrative process that facilitates the sharing of 

valuable information among architects, engineers, construction professionals, and other 

stakeholders throughout the building's lifecycle. BIM enables the creation of accurate virtual 

models of buildings, which can be used for planning, design, construction, and operational 

purposes, ensuring that all parties involved have a unified understanding and can make informed 

decisions regarding the construction and management of the building. BIM encompasses the entire 

process of creating and managing information about a building during its entire lifecycle. When 

infused with AI and Big Data, BIM transforms into a more potent tool. AI algorithms can analyze 

the Big Data derived from BIM models and operational data to unearth insights that were 

previously difficult or impossible to ascertain. These insights can then be used to enhance the 

design, construction, and operational management of buildings, ensuring that they are not only 

constructed and managed more efficiently but also that they perform optimally throughout their 

lifecycle. 

Together, AI, big data, and BIM form a robust framework that enhances the capabilities of 

architects, engineers, and construction professionals. This integrated approach ensures that 

buildings are designed, constructed, and managed in a way that is not only efficient and cost-

effective but also sustainable and future-proof, thereby aligning with the objectives of smart, 

adaptive, and sustainable urban development. 

Researchers are currently deepening their research in AI, big data and BIM. For example, Lokshina 

et al. [69] addressed the relatively slow adoption of digital transformation in the architecture, 

engineering, and construction (AEC) industry, highlighting BIM as a pivotal technology that could 

usher the industry in the digital era by enhancing collaboration and communication among 

stakeholders through information and communication technologies (ICTs). They explore the 

integration of IOT designs and services into the BIM process, identifying potential security 

concerns arising from the implementation of the IoT in a modular environment with numerous 

interdependencies. To mitigate these concerns, this paper proposes a system design that uses 

blockchain technology to secure and control frameworks that integrate IoT and BIM technologies, 

exemplifying its application through a smart museum while asserting the generic and versatile 

applicability of the design in various building categories, such as university renovation projects. 
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Figure 7: AI-based BIM for intelligent structural damage recognition  [70] 

Yang et al. [70] studied the intersection of BIM and AI in the construction industry, particularly 

focusing on addressing existing challenges in intelligent construction technology in China, 

especially concerning structural damage monitoring during bridge construction (Figure 7). 

Recognizing limitations in classical neural network algorithms predominantly used in prior 

research, this study introduces innovative improvement measures, substantiates their efficacy 

through practical arithmetic examples, and integrates the improved neural network recognition 

algorithm into the BIM framework to adequately recognize and assess bridge structural damage. 

This integration not only enhances the intelligence level of the BIM system but also offers insights 

for progressing intelligent construction technology, which is especially pertinent to bridge 

construction monitoring. 

4.2 DTs in BIM 

Integrating DT within BIM represents an innovation that melds physical buildings and structures 

with their digital counterparts to facilitate enhanced decision-making and management across the 

entire lifecycle of a building. In the sphere of BIM, DTs enable the creation of a precise virtual 

model of a building, allowing engineers and architects to conduct visual simulations and analyses 

during the design and construction phases, thereby assisting in optimizing designs and pinpointing 

potential issues. A DT can synchronize the real-time data of a building, including structural, 

environmental, and operational data, to perform continuous monitoring and analysis throughout 

its entire lifecycle, subsequently increasing operational efficiency and maintenance management. 

The incorporation of DTs into BIM can augment collaboration among all stakeholders (such as 

architects, engineers, contractors, and operators) by sharing real-time, accurate building data, 

ensuring that decisions at each stage are based on precise and timely information. Moreover, DTs 

not only play a role during the design and construction phases of a building but also provide vital 

input during the operational phase through predictive maintenance and optimizing building 

performance, thereby reducing operational costs and enhancing the overall efficacy of the building. 

Research on DT applications in BIM in a more digital and intelligent direction. Delbrügger et al. 

[71] provide an in-depth analysis of the growing role of BIM in asset management during the 
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operation and maintenance phases in the architecture, engineering, and construction industries. 

They discuss the latest research trends and the influence of industry standards on BIM. While 

acknowledging BIM's significant contributions, the authors highlight its limitations in terms of 

information depth and analytical power, especially in the operation and maintenance stages. To 

address these gaps, they propose a new approach that integrates DT, which leverages AI, machine 

learning, and data analytics to create dynamic models that can continuously learn from and update 

them on the basis of various data sources. 

With the rapid development of AI, computer vision technology has been widely used in image 

recognition, facial recognition, intelligent monitoring, and other fields. Some researchers have 

used computer vision technology for the combination of DTs and BIM. Zhou et al. [72] introduced 

a pioneering computer vision DT scheme that employs BIM and uses camera videos as input, 

navigating through challenges related to dimensions, coordinate systems, and object 

inconsistencies between BIM and camera videos. The proposed DT framework uses a unique 

method that combines object detection with 3-D object estimation networks to determine object 

positions and orientations. It includes theorems and lemmas for calculating 3-D coordinates in the 

building coordinate system (BCS) on the basis of detected 2-D positions. Additionally, the 

approach features cold-start and run-time object matching schemes to resolve discrepancies 

between camera footage and BIM. The performance of the proposed approach is substantiated 

through real-world experiments, which demonstrate precise location error metrics, and notably, it 

first explores a DT scheme atop BIM via computer vision, potentially sparking further intelligent 

studies in smart buildings that jointly utilize computer vision and BIM. 

 

Figure 8: A technical framework that integrates robotics, AI and BIM for defect DTs [73] 

Chen et al. [73] developed a technical framework aimed at facilitating defect DTs by 

synergistically integrating robotics, AI, and BIM, addressing the global issue of aging buildings 

and infrastructure and the imperative of adept management and renovation (Figure 8). This 

framework creates a system that connects physical defects with their digital representations in a 

virtual environment, improving defect information modeling by enabling the quick and efficient 

capture of precise, current as-damaged data. A case study involving a 10-story residential building 

in Hong Kong demonstrated the framework’s effectiveness in matching defects on the basis of 

location, geometry, and size. This approach also has potential for broader applications, such as 
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matching facility defects on a street block or even at the city level, which could aid urban renewal 

initiatives. 

4.3 DTs in Infrastructure Assessment 

In the global context of aging infrastructure, regular monitoring, assessment, and maintenance are 

important [74-78]. The DT method has been utilized in infrastructure assessment for many years. 

The synergistic combination of DTs and sensor monitoring techniques provides multifaceted 

applications. This integrated approach takes advantage of real-time data collection and 

computational modeling to provide a comprehensive view of structural integrity. For example, 

vibration sensors can continuously monitor vibration and motion within an infrastructural 

component. These real-time monitoring data can be fed into the DT model to replicate the physical 

characteristics and behavior of the infrastructural component in a virtual environment. Mercedes 

et al. [79] presented a comprehensive approach to generating seismic fragility curves for a precast 

reinforced concrete bridge equipped with a vibration-based structural health monitoring (SHM) 

system located near an active seismic fault in the Dominican Republic. Given that the bridge serves 

as a critical lifeline to several local communities and is built to outdated construction standards ill 

suited for seismic resilience, the SHM system is essential for assessing its structural integrity and 

seismic performance. The authors effectively combine data from the SHM system with 

computational models to produce fragility curves, offering quantitative measurements of expected 

damage and probabilistic estimates for exceeding various states of failure as functions of seismic 

intensity. The authors employ a DT model of the bridge, developed via finite element analysis and 

data from the SHM system, as a predictive tool for minimizing modeling uncertainties and 

enhancing the accuracy of the fragility curves. The proposed DT was applied to conduct nonlinear 

incremental dynamic analysis (IDA) by utilizing ground motions tailored to the seismic fault and 

site specifics. The analysis revealed that, considering the highest expected acceleration with a 2% 

chance of surpassing within 50 years, there is a 62% likelihood of the structure sustaining 

significant damage. 

Ye et al. [80] conducted an exploratory study over two years, aiming to create a DT of bridges for 

structural health monitoring by leveraging interdisciplinary collaboration between civil engineers 

and statisticians. Their research focused on four key areas: real-time data management via physics-

based approaches, data-driven approaches, and the integration of these methods to develop a 

comprehensive DT framework for railway bridges in Staffordshire, UK. Fidler et al. [81] 

augmented an existing fiber-optic strain-based bridge structural health monitoring system with 

additional sensors measuring deck rotation and axle positions to enhance infrastructure asset 

management. They designed and implemented a system that integrates real-time data into a DT 

with back ends for analysis and overcame challenges such as synchronizing timestamps from 

multiple sensors during a time-limited overnight installation. Lin et al. [82] presented a novel DT-

based methodology for assessing the seismic collapse performance of large-span cable-stayed 

bridges under the influence of strong earthquakes. This study investigated a scaled physical model 

of a large-span cable-stayed bridge with accelerometer sensors and employed linear and nonlinear 

model updating techniques to create a DT model on the basis of a finite element (FE) model from 
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the original design documents. Subsequently, seismic fragility analysis was performed via the 

incremental dynamic analysis (IDA) method to generate collapse fragility curves for three different 

FE models. 

 

Figure 9: Workflow of masonry arch bridge DT development [83] 

Muhit et al. [83] explored the issue of managing aged masonry arch bridges through DTs in Europe. 

Many bridges in Europe are more than a century old and are subject to operational constraints or 

closures due to increased traffic loads. The authors introduce a comprehensive framework for 

creating DTs of these bridges to facilitate more informed decision-making for their repair and 

maintenance. The authors describe the process of obtaining dynamic characteristics, including the 

natural frequency and modal shape, through ambient vibration tests via accelerometers. A 

Bayesian method is applied for identifying structural modal properties within specific time 

windows. By integrating 3D geometry derived from photogrammetry with these modal properties, 

the authors develop a high-fidelity numerical model that can be continuously calibrated with real-

world data (Figure 9). This framework offers a promising approach for managing aged masonry 

arch bridges and uses advanced real-time monitoring and data-driven methods to enhance the 

assessment of damage accumulation over time. Using fiber optic sensors can be another way to 
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collect real-time data and update DT models. For example, Febrianto et al. [84] investigated DTs 

incorporating fiber optic strain sensors. Using a case study of a 27.34-meter-long steel railroad 

bridge in Staffordshire, UK, fitted with fiber Bragg grating sensors at several locations, the authors 

used the statistical finite element method (statFEM) to combine real-world data with a physically 

based model, considering uncertainties in the sensor readings, applied loads, and model errors. The 

method provides convincing results that effectively predict the "real" system response in the form 

of strain distributions on the two main I-girders of the bridge during train passage. The study 

revealed that varying the number of sensors (40, 20, and 10) and their sampling rates did not 

significantly affect the precision of the strain predictions of the statFEM, as indicated by negligible 

differences in the 95% confidence intervals. This shows that the statFEM can reduce the cost of 

sensor networks while maintaining data interpretability, even if the dataset is reduced or 

incomplete. This suggests that the statFEM can generate reasonable strain distribution predictions 

at points lacking direct sensor measurements, thus expanding its application to long-term structural 

health monitoring. 
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Figure 10: Software modules of the DT bridge health and structural safety monitoring 

system [85] 

Lei et al. [85] presented a DT system for the health monitoring of bridges that uses a high-speed 

demodulation system grounded in dual long-period fiber gratings. This study stands out for its 

fiber grating-based damage self-diagnosis system, which facilitates strain distribution and impact 

load monitoring. Employing advanced information recognition methods, the system adeptly 

localizes impact loads. The authors address the inherent challenges of dealing with complex, high-

volume data by implementing essential data cleaning techniques, including the transformation of 

data into dimensionless form and the handling of missing values. Furthermore, they analyze and 

construct a DT KNN model specifically designed for the monitoring and management of bridge 

transition construction. The system architecture is comprehensive, featuring multiple privilege 

login modes, a display of BIM models, geographic information, and meteorological data. 

Additionally, the platform allows for the modification and analysis of data and even includes email 
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warning functions. Figure 10 displays the software modules of the DT bridge health and structural 

safety monitoring system. Liu et al. [86] developed a real-time, updatable DT model that is based 

on BIM. Using machine learning algorithms to intelligently interpret strain distributions, they 

introduced an automated method for identifying, locating, quantifying, and visualizing cracks that 

addresses the inefficiencies and inaccuracies of manually interpreting distributed fiber optic sensor 

data, as shown in Figure 11. The model serves as a real-time visualization interface for monitoring 

cracks, with data continuously provided by distributed fiber optic sensors. The authors validated 

their method by conducting laboratory tests on concrete beams, achieving highly accurate crack 

monitoring. 

 

Figure 11: Crack visualization method using fiber optic sensors and DTs [86] 

In addition to sensing technologies, drone inspection can be combined with DT modeling, as it 

provides accurate and comprehensive information on the health condition of the infrastructure 

surface. Yoon et al. [87] developed a DT model incorporating drone monitoring in response to the 

urgent need for periodic inspections of aging bridges. Typically, drone inspections map only 

external damage and do not address seismic performance. The authors propose a comprehensive 

two-phase method that integrates drone-based inspections into a DT framework followed by a 

seismic fragility analysis. This model is updated with bridge conditions sourced from drone 

inspections, translating observed damage into a quantifiable damage index that reflects reductions 

in structural stiffness. Using this recalibrated DT, the seismic fragility analyses are run with 

varying earthquake scenarios. Their method, which was tested on an in-service prestressed 

concrete box bridge, demonstrated a notable difference in the seismic fragility curves of a 

deteriorated bridge compared with an intact bridge. Benzon et al. [88] introduced a method for 

constructing an operational DT for expansive infrastructures that uses drone-captured images. 

Central to this study is the DT's ability to virtually mirror the real-world structure and evolve in 

tandem with the structure's physical alterations throughout its life span. Validating their approach 

on a wind turbine transition piece, the authors adeptly harnessed over 500 RGB drone images and 

multiple LiDAR scans to craft a detailed three-dimensional geometric rendition. This digital 

construct was then juxtaposed with the original design to identify and quantify manufacturing 
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inconsistencies and tolerances. Leveraging artificial intelligence, the methodology proficiently 

identified and categorized paint defects from the images, subsequently mapping them onto the 3D 

model. This offers the opportunity for real-time updates to the DT on the basis of periodic 

inspections. The paper thoughtfully delineates the core technologies underpinning this DT concept. 

Importantly, while the focus here is on wind turbines, the authors emphasize the method's broader 

applicability across industries such as aerospace, marine, transportation, and other substantial 

infrastructure domains. 

5. DTs in the power industry 

In contemporary power transmission systems, the incorporation of DT technology is gradually 

emerging as a pivotal innovative practice, fundamentally esteemed for enabling the simulation, 

analysis, and optimization of the actual transmission system in real time without necessitating 

direct intervention in the physical system. The integration of a spectrum of advanced technologies, 

including IOTs, big data, AI, and DTs, achieves real-time or near-real-time monitoring, analysis, 

and control of transmission systems. This technology provides a highly accurate and flexible 

virtual platform for the design, operation, and maintenance of transmission systems. On this 

platform, engineers and decision-makers can simulate various operational scenarios, validate 

different control strategies, predict future system behaviors, analyze potential risks and issues, and 

formulate corresponding optimization strategies and solutions [89]. For example, during the design 

phase of transmission lines, engineers can simulate different design schemes and operating 

parameters in a virtual environment via DT technology to ascertain their performance and efficacy 

in practical applications. In the operational phase, real-time data monitoring and analysis, realized 

through the DT, can assist operators in comprehending the operational status of the transmission 

system instantaneously, identifying, and preempting potential failures and risks, and optimizing 

operational strategies to increase system reliability and economic benefits [90]. In the maintenance 

phase, the application of DT technology can aid maintenance personnel in accurately gauging the 

aging and wear status of the transmission system and predicting potential failures and risks, thereby 

actualizing predictive maintenance, increasing the precision and efficiency of maintenance, and 

reducing maintenance costs and risks. Furthermore, DT technology can also assist decision-makers 

in executing more precise energy dispatching and management to navigate the complex and 

volatile electricity demand and market environment [91]. In conclusion, the application of DT 

technology in transmission systems not only facilitates the elevation of the intelligence level of 

system design, operation, and maintenance but also provides robust assurance for the stable, safe, 

and efficient operation of power systems. This method merits more extensive and profound 

research and application in future power transmission systems. 

In summary, the DT system operates by using its synchronization capabilities to set initial 

parameters and enable dynamic data interaction, effectively replicating the behavior and 

environment of physical entities on an information-based platform. The system allows for 

projections and predictions that are impractical in the real world, utilizing its autonomous features. 

With its interactive function, the system can adjust and monitor the operational states of physical 

entities in real time. Additionally, the DT's sharing feature supports joint simulations of multiple 

components. Building a digital transmission system with DT technology is a gradual process 

beginning with localized, small-scale applications. Currently, this technology is mainly used in 

transmission and distribution systems for inspection, maintenance, and power system operation 

optimization. 
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5.1 Inspection and Maintenance 

Inspection and maintenance in the context of power transmission and distribution systems are 

critical to ensuring reliability, efficiency, and safety in the delivery of electricity from generation 

points to end-users. Robust inspection protocols include systematic examination of various 

components and subsystems, including transformers, transmission lines, and substations, to 

identify potential vulnerabilities, such as wear and tear, or anomalies that might impede optimal 

functionality. Moreover, maintenance practices, which may be either preventive or corrective, 

encompass a range of activities aimed at preserving the condition of the equipment and 

infrastructure or restoring it to a state in which it can perform its required function. Both aspects 

are crucial in mitigating the risks of system failure, minimizing unplanned downtimes, and thereby 

guaranteeing a stable and continuous power supply while also prolonging the lifespan of the assets 

within the system. Furthermore, advances in technology enable the incorporation of smart 

solutions, such as the use of DTs, to enhance traditional inspection and maintenance processes by 

providing precise, real-time data and facilitating predictive maintenance strategies. 

Many researchers have begun to focus on this point and have made numerous innovations. Gause 

et al. [92] explored the digital transformation of essential engineering maintenance processes, with 

an emphasis on inspecting medium-voltage overhead distribution networks. They employed DT 

technology for 3D modeling and analysis, utilizing photogrammetry and aerial scanning data 

(Figure 12). The proposed approach, which supports remote operation and relies on data-driven 

solutions for objective and cost-effective outcomes, was applied to the Latvian medium-voltage 

overhead distribution network with support from the Latvian distribution system operator “Sadales 

tīkls” JSC. This paper outlines practical applications of these data-driven methods for various 

infrastructure management processes, such as scheduled and unplanned inspections, and 

vegetation management processes, providing a pathway toward enhanced automation and 

economic efficiency in maintenance and inspection tasks. Liu et al. [93] addressed the 

shortcomings of traditional methods for evaluating the status of power transmission and 

transformation equipment, such as delays and poor data quality, by developing a DT system for 

this equipment. By integrating and refining sensor data according to the operational characteristics 

of the equipment and applying big data analysis and data mining techniques, they achieved 

differentiated status evaluation, precise fault diagnosis, and status prediction. This paper also 

explored the use of DT technology in online status evaluation for transformers, discussing aspects 

such as data management, model development, and the future potential of DTs for monitoring key 

power transmission and transformation equipment. Zhou et al. [94] emphasized the importance of 

accurately assessing the status of power transformers, which are important components in power 

grids, to improve management and ensure safe, stable operations. However, they noted that it is 

difficult to accurately describe asset attributes via a single monitoring system. Given the growing 

interest in DT technology across various sectors and its limited application in power systems, this 

paper introduces a method for transformer state assessment via DTs. This method requires the 

characteristics of multiple heterogeneous systems to be combined to construct a comprehensive 

asset attribute index, and sample data from various sources are obtained and labeled. The labeled 

data are then used to guide decision-making in state evaluation, with the DT model's sample data 

compared to those of physical systems to improve the accuracy of state assessments in the actual 

system. 
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Figure 12: Fragment of an aerial laser scanning power line [92] 

5.2 Optimizing the Operation of Power Systems 

DT technology plays a pivotal role in optimizing the operation of power systems, establishing a 

high-fidelity virtual model of physical electrical power systems, which not only enables engineers 

to simulate and test various operational scenarios and strategies without impacting the actual 

system but also provides a real-time, dynamic platform for monitoring, analyzing, and optimizing 

system operation. On this virtual platform, the actual system's operational data are synchronized 

in real time with the DT, allowing operators to comprehend the system’s operational status and 

performance instantaneously, thereby enhancing the system's reliability and efficiency. Moreover, 

DT technology also lends support for the long-term planning and optimization of electrical power 

system operations; for example, by simulating various operational and investment strategies, 

operators can analyze and determine the most economical and reliable system upgrade and 

expansion plans. 

Several case studies have been conducted in this field. For example, Tomin et al. [95] explored the 

burgeoning realm of DT technology in the context of urban electric grids, articulating its potential 

in bolstering the flexibility, consumption optimization, and reduction of energy losses in urban 

electrical networks by enabling the simulation and testing of various operational scenarios without 

impacting actual systems. In 2019, the Irkutsk Scientific Center of the Siberian Branch of the 

Russian Academy of Sciences initiated a project to install smart power meters for more detailed 

monitoring of power consumption in a district of Irkutsk. The collected data were intended to 

create a DT of the district's electrical network. They also proposed a DT concept based on 

reinforcement machine learning, which allows the creation of an accurate digital model of the 

electrical network, as depicted in Figure 13. This model enables bidirectional automatic data 

exchange for modeling, optimization, and control, synchronizing all network information and 

updating on the basis of system changes and feedback on control actions. Andryushkevich et al. 

[96] proposed a method for developing DTs of power systems, using the energy supply of a 

localized R&D facility as an example. They introduce a six-layer architecture for the DT and 

describe its prototype software, which includes an ontological model, a digital single-line diagram, 

electronic documentation, master data, load measurement data, and mathematical simulations. The 

authors address challenges in ontological modeling of the prosumer infrastructure, including 

customer load and small-scale generation, using OWL for a machine-readable DT representation. 

They also optimized the configuration of a hybrid power supply system with renewable energy 
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sources on the basis of the developed DT. Arraño-Vargas et al. [97] presented a modular 

framework for power system DTs (PSDTs) designed to advance future power grids by enhancing 

network monitoring, operation, and planning across the industry. They noted that current DT 

frameworks are limited to specific power system components, applications, or users. Their 

proposed framework is flexible, robust, and cost-effective, with a modular design that allows 

expansion beyond individual components, facilitating the integration of multiple services and users 

without disrupting existing modules. Each module can be independently developed, modified, or 

replaced, enabling more advanced, specialized, and multidomain applications for power system 

operations and planning. The authors illustrate the initial development of a PSDT via a real-time 

compatible model of the Australian National Electricity Market, which serves as a foundation for 

various modules within the DT. They demonstrated potential applications, such as renewable 

energy integration and "what-if" scenarios, via the electromagnetic transient (EMT) model, 

highlighting the anticipated future uses of PSDTs. 

 

Figure 13: Architecture of the DT for a power grid through RL [96] 

6. Challenges and Future of DT 

Currently, DT technology, which is supported by a variety of emerging technologies, has great 

development prospects and value realization capabilities, is being focused on, studied, and 

practically applied in many industry fields, including military and civilian fields, and has achieved 

a series of studies and practical results. However, the development of DT technology is currently 

facing many challenges [98]. The following are the current challenges and research hotspots in the 

application of DTs in various industries. 

6.1 Management of Data 

Data management is a foundational element of DTs, serving as the critical link between physical 

systems and their virtual counterparts. Three key aspects enhance the quality and sophistication of 

DTs from a data perspective: data perception, data communication, and data analysis. 

In terms of data perception, advanced sensor technologies are essential for capturing accurate and 

real-time data from physical environments. Tao et al. [99] emphasized the importance of 

integrating high-precision sensors and deploying sensor networks to improve data collection 

capabilities. They discussed strategies such as using Internet of Things (IoT) devices and 

implementing redundant sensing to increase reliability and reduce data gaps. Similarly, Fuller et 



Title 

al. [98] highlighted challenges in data acquisition, noting that existing sensing equipment often 

fails to meet the stringent requirements of DT systems. This shortfall can lead to inaccuracies in 

the virtual models, affecting their ability to replicate physical behaviors accurately. With respect 

to data communication, efficient and reliable transmission of data between the physical system 

and the DT is important. Leng et al. [65] discussed issues such as excessive latency and data noise 

that can hinder real-time synchronization. They proposed solutions such as implementing high-

speed communication networks such as 5G technology and enhancing data transmission protocols 

to reduce latency and improve data integrity. These measures aim to achieve low-latency, high-

accuracy data exchanges, which are essential for responsive DT operations. In the realm of data 

analysis, Qi et al. [100] explored how integrating big data technologies and artificial intelligence 

(AI) can continuously optimize analytical algorithms. By leveraging machine learning and 

predictive analytics, DTs can process vast amounts of data to identify patterns, predict future states, 

and make informed decisions. This integration enhances the ability of DTs to adapt to changing 

conditions and improves overall system performance. 

6.2 Model development 

Model development is a critical but challenging component in the development of DTs across 

various industries. The physical systems contain a large number of devices, people, and assets, 

where the large amount of data and complex data dimensions pose great challenges for twin 

modeling. For example, the modeling of equipment in various industries requires solving the 

complex problem of building full-scale multiphysics field coupled models [101], just as the 

modeling of industrial equipment suffers from a large amount of data, structural complexity, and 

special operating conditions [102]. Throughout the DT model construction process, it becomes 

critical to combine existing expert empirical knowledge with data-driven modeling techniques to 

improve model accuracy. In addition, ensuring the symbiosis of virtual and physical systems in 

DTs is imperative so that the model and physical systems are always synchronized in complex, 

changing, and unstable operating environments. Tao et al. [4] noted that most existing modeling 

technologies and tools focus on model construction, with insufficient options for subsequent 

aspects. There is a lack of a system or standard of technologies and tools to guide the use of 

technologies and tools in various modeling aspects. The technologies and tools used in the same 

modeling aspect are not strongly related, and the technologies or tools used in different modeling 

aspects are also fragmented and lack continuity. 

Furthermore, maintaining synchronization between DTs and their physical counterparts is 

essential for accurate real-time representation. Cimino et al. [30] examined the challenges posed 

by complex and unstable operational environments, which can lead to discrepancies between the 

physical system and its DT. They emphasized the need for continuous data updates and adaptive 

algorithms to ensure that the DT remains an accurate reflection of the physical system over time. 

6.3 Cybersecurity of DTs 

DT will be the core part of future digitization in various sectors and possibly of the subsequently 

developed DT systems, so information and physical security issues will be a considerable 

challenge in the future. Cyberattacks against DTs could lead to a range of problems, such as data 

leakage, system failure, and poor decision-making, which in turn could lead to more serious 

societal problems [103]. Information-physical security issues can arise from both internal and 

external sources, such as external malicious cyber-attacks and internal system operational failures. 

Establishing accurate security monitoring mechanisms, building strong protection mechanisms 
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against external malicious attacks, and developing effective fault tolerance mechanisms to ensure 

normal operation in the event of information physical security problems are all issues that must be 

considered. 

Sadeghi et al. [104] detailed how cyberattacks on IoT systems could lead to societal repercussions, 

such as disruptions in critical infrastructure and services. They stressed the necessity of 

implementing robust security frameworks that include threat detection, response strategies, and 

regular security assessments. Masi et al. [105] introduced a specific architectural view, called the 

cyber security view, in system representation. Thus, a cybersecurity DT is derived as part of the 

security design practices for industrial automation and control systems used in critical 

infrastructures. This DT allows cyberattacks to be simulated and countermeasures to be developed. 

Mustofa et al. [106] discovered that distributed denial-of-service (DDoS) attacks have a greater 

impact on the IT systems of DT-based organizations than do malware attacks do, particularly in 

terms of attack propagation, operational performance, reliability, and resilience. These findings 

have practical applications, allowing DT-based organizations to pinpoint high-risk cyber threats, 

assess and forecast IT performance during actual cyber incidents, and formulate proactive 

measures to increase network security. 

6.4 Establishment of Standards for DTs 

There is also the challenge of establishing suitable, accurate, and quantifiable evaluation systems 

for the degree of twinning for current and future DT projects across various industries to develop 

standards. It is necessary to combine the characteristics of DTs with comprehensive and 

quantifiable project evaluation systems proposed by standardization organizations, industry 

associations, or other authoritative organizations. In addition to the above evaluation standards, in 

the future application of DTs, it is necessary to establish universal implementation standards, 

including hardware, communication technologies and protocols, AI technologies, and universal 

visualization platforms, in conjunction with the universal standards for DTs [107]. In addition to 

the physical information security issues described in the previous section, DTs may have several 

security operational issues that necessitate the establishment of maintenance standards to 

standardize operations and ensure hardware and software security and data security. 

Kritzinger et al. [64] emphasized the need for comprehensive evaluation criteria developed by 

standardization bodies and industry associations. Such criteria should include performance metrics, 

data quality standards, and benchmarking tools to objectively assess the effectiveness of DT 

systems. Schleich et al. [108] highlighted the importance of establishing universal implementation 

standards related to hardware, communication protocols, AI algorithms, and visualization 

platforms. Standardized hardware components and interfaces ensure compatibility and ease of 

integration across different systems. Adopting common communication protocols facilitates 

seamless data exchange, while standardizing AI algorithms enhances the transparency and 

reproducibility of analytical processes. 

7. Summary and conclusions 

DT technology has demonstrated significant potential in transforming various industries by 

enabling real-time simulation, analysis, and optimization of complex systems. The integration of 

DTs with AI, big data, and BIM has opened new avenues for innovation and efficiency across 

sectors such as aerospace, manufacturing, construction, and power transmission systems. This 

review highlights the diverse applications and benefits of DTs, as well as the challenges that need 

to be addressed for their widespread adoption. Key challenges include data management, model 
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development, cybersecurity, and the establishment of standardized evaluation criteria. Addressing 

these challenges is important for realizing the full potential of DT technology and ensuring its 

successful implementation in Industry 4.0. Future research and development efforts should focus 

on enhancing data quality, improving model accuracy, ensuring robust cybersecurity measures, 

and developing universal standards to facilitate the broader application of DTs. As these challenges 

are overcome, DT technology is poised to play an important role in the evolution of smart, resilient, 

and efficient industrial systems. 

This paper provides a comprehensive review of the application of DTs in traditional industries 

such as aerospace, manufacturing, construction, and power transmission. However, it is important 

to acknowledge certain limitations. This paper focuses primarily on the application of DTs in 

certain traditional industries and does not cover emerging fields such as healthcare and new energy. 

Additionally, owing to the rapid pace of technological development, the paper may not capture the 

latest advancements in some areas. As DTs continue to evolve, future research should consider 

expanding the scope to include more industries and newer innovations. 
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